
Non-blocking algorithms
Bruno Corrêa Zimmermann



What is a non-blocking algorithm?
A concurrent algorithm that does not block the thread to synchronize.

Blocking
algorithmsNon-blocking algorithms



What is a non-blocking algorithm?
Every non-blocking algorithm is at least an obstruction-free algorithm!

Obstruction-free
algorithms

Lock-free
algorithms

Wait-free
algorithms

Blocking
algorithms



Non-blocking algorithm classes -comparison

Algorithm class Invariant condition Invariant

Obstruction-free Suspend all threads except one The remaining thread makes 
progress

Lock-free Suspend one thread At least one of the remaining 
threads makes progress

Wait-free Suspend one thread All remaining threads make 
progress



Why non-blocking algorithms?
- Guarantee that there won’t be any deadlocks;

- Progress even when other resources are busy;

- No need to depend on a scheduler;

- Possibly better performance.



Why NOT non-blocking algorithms?
- Easier to introduce bugs;

- Hard to implement with actual good performance;

- Your problem might not fit well into non-blocking algorithms.



- Bare read and writes to memory?

- Data race: undefined behavior and data corruption;

- Not an option! 

- Use atomic memory operations instead:

- Atomic operations’ side effects are observable only when finished.

How to synchronize without blocking?



Atomic memory operations
Atomic operation Non-atomic version
y = x.load(); y = *x;

x.store(y); *x = y;

z = x.swap(y);
z = *x;
*x = y;

z = x.compare_exchange(w, y);

x_ = *x;
if x_ == w
    *x = y;
    z = Ok(x_);
else
    z = Err(x_);



Memory access reordering
- Memory accesses can be reordered:

- By the compiler;

- By the processor.

- A thread cannot observe own operations’ reorderings;

- A thread can observe other threads’ reorderings;

- The programmer can restrict reorderings in atomic operations.



Memory orderings
- Memory orderings are types of restriction a programmer can put in reorderings.

- As of Rust 1.68.0, in Rust they are:
- Sequential consistency (SeqCst);

- Acquire;

- Release;

- Acquire/release (AcqRel);

- Relaxed.



Memory orderings – sequential consistency and relaxed
- Sequential consistency = no reordering can cross this operation:

- Worse performance but more easily correct;

- Relaxed = any reordering can cross this operation:

- Better performance but more easily incorrect.



Memory orderings – sequential consistency
foo();

bar();                      Compiler/processor can freely reorder inside this.

baz(); 

let y = x.load(SeqCst);                  Compiler/processor cannot cross this.

bla();

blor();                      Compiler/processor can freely reorder inside this.

blergh();



Memory orderings – relaxed
foo();

bar();

baz(); 

let y = x.load(Relaxed);              Compiler/processor can freely reorder anywhere here

bla();

blor();                      

blergh();



Memory orderings – acquire, release and acquire/release
- Acquire should be used for reads;

- Release should be used for writes;

- Acquire/release should be used for combining read and write in one operation;

- Acquire and release are paired together;

- Acquire/release is paired with acquire, release or acquire/release.



Memory orderings – acquire, release and acquire/release
- Acquire = operations before the associated write stays before the write;

- Release = operations after the associated read stays after the read;

- Acquire/release = the effects of an acquire and a release at the same time.



Memory orderings – acquire and release
Thread A

foo();

bar();

let z = x.load(Acquire);

use_a(a);

Thread B

a = 5;

x.store(y, Release);

blergh();

hogh();

X X

X CANNOT be observed by the other thread

— CAN be observed by the other thread



Thread C

borg();

a = 7;

let v = x.swap(w, AcqRel);

use_b(b);

sourgh();

Memory orderings – acquire/release
Thread A

foo();

bar();

let z = x.load(Acquire);

use_a(a);

Thread B

b = 5;

x.store(y, Release);

blergh();

hogh();



Thread C

borg();

a = 7;

let v = x.swap(w, AcqRel);

use_b(b);

sourgh();

Memory orderings – acquire/release – thread B and C
Thread A

foo();

bar();

let z = x.load(Acquire);

use_a(a);

Thread B

b = 5;

x.store(y, Release);

blergh();

hogh();

X
X

X CANNOT be observed by the other thread

— CAN be observed by the other thread



Thread C

borg();

a = 7;

let v = x.swap(w, AcqRel);

use_b(b);

sourgh();

Memory orderings – acquire/release – thread A and C
Thread A

foo();

bar();

let z = x.load(Acquire);

use_a(a);

Thread B

b = 5;

x.store(y, Release);

blergh();

hogh();
XX

X CANNOT be observed by the other thread

— CAN be observed by the other thread



Atomic data types in Rust standard library

- AtomicBool

- AtomicPtr<T>

- AtomicUsize

- AtomicIsize

- AtomicU8

- AtomicI8

- AtomicU16

- AtomicI16

- AtomicU32

- AtomicI32

- AtomicU64

- AtomicI64



Common atomic operations in Rust standard library
- fn load(&self, Ordering) -> T;

- fn store(&self, data: T, Ordering);

- fn swap(&self, data: T, Ordering) -> T;

- fn compare_exchange(
&self,
expected_value: T,
new_value: T,
success_ordering: Ordering,
failure_ordering: Ordering,

) -> Result<T, T>;



Non-blocking algorithm tips
- Generally involves operations with reads and writes;

- Publish data atomically considering the implementation of consumers;

- Read data only when fully published;

- Cannot make a thread “wait” as if they were locks;

- Cannot use locks at all (mutex, read-write-locks, etc);

- Not even barriers.



Example: atomic, lock-free in-place factorial
use std::sync::atomic::{AtomicU64, Ordering::*};

pub fn update_to_factorial(number: &AtomicU64) {

    let mut current = number.load(SeqCst);

    loop {

        let factorial = (1 ..= current).product();

        match number.compare_exchange(current, factorial, SeqCst, Relaxed) {

             Ok(_) => break,

             Err(new) => current = new,

        }

    }

}



In the in-place factorial example…
- Usage of compare_exchange;

- Result is only published when fully done.



Counterexample: not a lockfree algorithm
use std::sync::atomic::{AtomicBool, Ordering::*};

struct Mutex {

    locked: AtomicBool,

}

impl Mutex {

    pub fn new() -> Self {

        Self { locked: AtomicBool::new(false) }

    }

    pub fn lock(&self) {

        while !self.locked.swap(true, Acquire) {}

    }    

    pub fn unlock(&self) {

        self.locked.store(false, Release);

    }

}



In counterexample…

- It is actually a spinlock;

- .lock() will make the current  thread wait:
- possibly infinitely.



- Arises designing some non-blocking algorithms;

- Affects compare_exchange;

- Mainly a issue with pointers.

ABA Problem



ABA Problem
- Thread T reads pointer A;

- Thread U stores new pointer B;

- Thread U frees pointer A;

- Thread V reads pointer B;

- Thread V allocates new pointer;
- Allocator recycles pointer A;

- Thread V stores recycled pointer A;

- Thread T compares-exchange expected A storing new pointer C;



- Thread T succeeds:
- Even though the pointer contents of A were different before recycling;

- Potential data corruption;

- This is the ABA problem:
- Recycled pointers yielding successful comparisons;

- There’s also a problem with freeing stuff other thread is reading.

ABA Problem



use std::{alloc::{alloc, dealloc, Layout},

    ptr,

    sync::atomic::{AtomicPtr, Ordering::*}};

struct Node<T> {

    data: T,

    next: *mut Self,

}

pub struct Stack<T> {

    top: AtomicPtr<Node<T>>,

}

impl<T> Stack<T> {

    pub fn new() -> Self {

        Self { top: AtomicPtr::new(ptr::null_mut()) }

    }

}

impl<T> Drop for Stack<T> {

    fn drop(&mut self) { while let Some(_) = self.pop() {} }

}

ABA Problem – example – stack definition



pub fn push(&self, data: T) {

    let mut top = self.top.load(Acquire);

    let node_ptr;

    unsafe {

        node_ptr = alloc(Layout::new::<Node<T>>()) as *mut Node<T>;

        *node_ptr = Node { data, next: top };

    }

    loop {

        match self.top.compare_exchange(top, node_ptr, Release, Acquire) {

            Ok(_) => break,

            Err(new_top) => {

                top = new_top;

                unsafe { (*node_ptr).next = top }

            }

        }

    }

}

ABA Problem – example – stack push



pub fn pop(&self) -> Option<T> {

    let mut top = self.top.load(Acquire);

    loop {

        if top.is_null() {

             break None;

        }

        let next = unsafe { (*top).next };

        match self.top.compare_exchange(top, next, AcqRel, Acquire) {

            Ok(node_ptr) => unsafe {

                let data = ptr::read(&(*node_ptr).data);

                dealloc(node_ptr as *mut u8, Layout::new::<Node<T>>());

                break Some(data);   

            }

            Err(new_top) => top = new_top,

        }

    }

}

ABA Problem – example – stack pop



pub fn pop(&self) -> Option<T> {

    let mut top = self.top.load(Acquire);

    loop {

        if top.is_null() {

             break None;

        }

        let next = unsafe { (*top).next };

        match self.top.compare_exchange(top, next, AcqRel, Acquire) {

            Ok(node_ptr) => unsafe {

                let data = ptr::read(&(*node_ptr).data);

                dealloc(node_ptr as *mut u8, Layout::new::<Node<T>>());

                break Some(data);   

            }

            Err(new_top) => top = new_top,

        }

    }

}

ABA Problem – example – stack pop
Thread A: reads in pop()
Thread B: pops and frees A pointer
Thread B: pushes with new allocation
Thread B: pushes with recycled allocation A
Thread A: compares_exchange successfully

“next” likely changed
leading to corruption



How to solve ABA?
- Add a version tag to the pointer:

- Reduces address size or can be architecture-dependent;

- Does not solve the problem completely;

- Use “hazard pointers”:
- Tricky to implement;

- Use the “incinerator”:
- Performance decreases;

- Problem-specific solutions.



My solution to ABA – the Incinerator
- A struct consisting of:

- An atomic counter of threads running critical sessions;
- A list of pointers to be deallocated soon;

- When a thread wants to deallocate a pointer, check the counter:
- if zero, then deallocate the pointer and the whole list;
- if not zero, simply put the pointer in the list;

- When a thread is going to access a critical pointer, increment the counter:
- When done, decrement the counter.



Possible Incinerator API – structs
pub struct Garbage {

    pub pointer: *mut u8,

    pub layout: Layout,

}

pub struct Incinerator { /* ... */ }

pub struct Pause<'incin> { /* ... */ }



Possible Incinerator internal data
struct GarbageNode {

    element: Garbage,

    next: *mut GarbageNode,

}

pub struct Incinerator {

    critical_counter: AtomicUsize,

    garbage_list: AtomicPtr<Vec<GarbageNode>>,

}

pub struct Pause<'incin> {

    incinerator: &'incin Incinerator,

}



Possible Incinerator API – methods
impl Incinerator {

    pub fn new() -> Self;

    pub unsafe fn incinerate(&self, garbage: Garbage) -> bool;

    pub fn try_clear(&self) -> bool;

    pub fn pause<'a>(&'a self) -> Pause<'a>;

}

unsafe impl Send for Incinerator {}

unsafe impl Sync for Incinerator {}

impl Drop for Incinerator { /* ... */ }

impl<'a> Drop for Pause<'a> { /* ... */ }



Fixing our stack – definition
pub struct Stack<T> {
    top: AtomicPtr<Node<T>>,
    incinerator: Arc<Incinerator>,
}

impl<T> Stack<T> {
    pub fn new() -> Self {
        Self::with_incinerator(Arc::new(Incinerator::new()))

}

    pub fn with_incinerator(incinerator: Arc<Incinerator>) -> Self {
        Self { top: AtomicPtr::new(ptr::null_mut()), incinerator }
    }
}



Fixing our stack – pop
pub fn pop(&self) -> Option<T> {
    let _incinerator_guard = self.incinerator.pause();
    let mut top = self.top.load(Acquire);
    loop {
        if top.is_null() {
             break None;
        }
        let next = unsafe { (*top).next };
        match self.top.compare_exchange(top, next, AcqRel, Acquire) {
            Ok(node_ptr) => unsafe {
                let data = ptr::read(&(*node_ptr).data);
                self.incinerator.incinerate(Garbage {
                    pointer: node_ptr as *mut u8,
                    layout: Layout::new::<Node<T>>(),
                });
                break Some(data);   
            }
            Err(new_top) => top = new_top,
        }
    }
}



Thank you!

Questions?


